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Abstract

For dynamics ẋ = f(x) with output y = h(x) invariant with respect to
a transformation group G, we define invariant asymptotic observer of the
form ˙̂x = f̂(x̂, y) where y = h(x) is the measured output and x̂ an estima-
tion of the unmeasured state x. Such a definition is motivated by a class
of chemical reactors, treated in details, when the group of transformations
corresponds to unit changes and the output y to ratio of concentrations.
We propose a constructive method that guaranties automatically the ob-
server invariance ˙̂x = f̂(x̂, y): it is based on invariant vector fields and
scalar functions, called invariant estimation errors, that can be computed
via Darboux-Cartan moving frame methods. The observer convergence
remains, in the general case, an open problem. But for the class of chemi-
cal reactors considered here, the invariant observer convergence is proved
by showing that, in a Killing metric associated to the action of G, the
symmetric part of the Jacobian matrix ∂f̂/∂x̂ is definite negative (con-
traction).
Key words: asymptotic observers, moving-frame method, invariant, sym-
metries, contraction, chemical reactors.

1 Introduction

In this paper we show how to exploit symmetry for the design of asymptotic
observer for nonlinear systems. The main contribution of the paper is to in-
troduce the notion of invariant estimation errors and to construct them via
the Darboux-Cartan moving-frame method. Although we do not have general
results on the convergence of such invariant design techniques, we are able to
prove global asymptotic convergence of such invariant observers for a class of
chemical reactors.
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Let us first consider the following simple example of a continuous stirred
tank of volume V with two concentrations c1 an c2 and one measured output y:

V
d

dt
c1 = F (cin

1 − c1)

V
d

dt
c2 = F (cin

2 − c2) (1)

y =
c1

c1 + c2

(F the input flow rate, (cin
1 , cin

2 ) input concentrations). This system is invariant
under the action of the scaling group. These balance equations do not depend on
the fact that the concentrations (c1, c2) are expressed in g/L or in mol/L. This
means that for any positive constants M1 and M2 and any scaling, C1 = M1c1,
C2 = M2c2, Cin

1 = M1c
in
1 and Cin

2 = M2c
in
2 , the equation remains unchanged

V
d

dt
C1 = F (Cin

1 − C1)

V
d

dt
C2 = F (Cin

2 − C2).

Notice that such scaling yields for y to the following transformation

Y = C1/(C1 + C2) = y/(y +
M2

M1
(1− y)).

Let us consider the following observer where ĉ1, ĉ2 and ŷ are estimates of c1, c2
and y, respectively and k is a design parameter:

V
d

dt
ĉ1 = F (cin

1 − ĉ1)− kĉ1 log
(

ŷ

1− ŷ

1− y

y

)

V
d

dt
ĉ2 = F (cin

2 − ĉ2)− kĉ2 log
(
1− ŷ

ŷ

y

1− y

)
(2)

ŷ =
ĉ1

ĉ1 + ĉ2
.

Simple computations show that this dynamics is also invariant with respect to
the same scaling group, since the error term becomes

Ŷ

1− Ŷ

1− Y

Y
=

Ĉ1

Ĉ2

C2

C1
=

ĉ1
ĉ2

c2
c1

=
ŷ

1− ŷ

1− y

y

If, instead of log
(

ŷ
1−ŷ

1−y
y

)
, we use an error term of the form (ŷ−y), then we lose

invariance. That observation has motivated this paper. Indeed, the error term
(ŷ − y) does not have a physical meaning since we are comparing two molar
or mass fractions: we can understand then why with this term the observer
invariance is lost. For nonlinear systems, classical design methods (as described
in [4]) or more recent design methods (as described in [1]) essentially relies on the
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error term (ŷ− y). This paper is a first tentative to design asymptotic observer
with nonlinear errors terms derived from the symmetries of the system. As we
will see in section 4, we get, for our example (1), a global asymptotic observer
when k is positive: this comes from the fact that, the observer dynamics is
strictly contracting for the metric ds2 = (dc1)

2

(c1)2
+ (dc2)

2

(c2)2
in the sense of [6].

The paper is organized as follows. In section 2, we recall some basic facts
on transformation groups, define invariant observers, and propose a construc-
tive method for invariant observer design. This method is based on invariant
estimation errors that, for G-invariant output, can be computed, as shown in
section 3, via the Darboux-Cartan moving-frame method recalled in appendix.
In section 4, we apply this method on a class of chemical reactors: it yields
an invariant observer that is proved to be globally convergent using contraction
theory [6].

This paper is, in some sense, the counter-part of [5] where the invariant
tracking problem is addressed.

2 Transformation group and invariance

We use here some basic notions that are defined in details in [2]. For clarity
sakes, we consider transformation groups acting on x local coordinates associ-
ated with the state. More global and coordinate-free definitions are possible
with state living on manifolds.

Consider the smooth dynamics

ẋ = f(x) (3)

where the state x belongs to an open subset X of R
n. Let G be a local group

of transformations acting on X according to

X = ϕg(x), g ∈ G,

where ϕg is a local diffeomorphism. Moreover, the dependence with respect to
g is smooth. Denote by r the dimension of the group G.

Definition 1. The dynamics (3) is said to be G-invariant if for every g ∈ G
the representation of the system remains unchanged, i.e., Ẋ = f(X).

Alternatively, we also say that G is a symmetry group of the system. The
definition means that, for every g ∈ G, we have

∀x ∈ X , f(ϕg(x)) =
∂ϕg

∂x
(x) · f(x).

For (1), the transformation group G is of dimension r = 2, depends on two
positive parameters M1 > 0 and M2 > 0, and its action is

(C1, C2) = ϕ(M1,M2)(c1, c2) = (M1c1,M2c2)
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where we denote by ϕ(M1,M2) the element of G associated to the parameters
(M1,M2). Notice that the input concentrations (cin

1 , cin
2 ) are also transformed

according to (Cin
1 , Cin

2 ) = (M1c
in
1 ,M2c

in
2 ).

Consider now a smooth output map h : x �→ y = h(x) on X , where the
output y belongs to an open subset Y of R

m (dim y = m).

Definition 2 (Invariant asymptotic observer). Consider a G-invariant
dynamics ẋ = f(x) with its output y = h(x) (not necessarily G-invariant). The
asymptotic observer

d

dt
x̂ = f̂(x̂, y)

is said G-invariant if and only if, for all g ∈ G, for all estimated state x̂ and
state x, we have

∂ϕg

∂x
(x̂) · f̂(x̂, h(x)) = f̂(ϕg(x̂), h(ϕg(x))).

This definition just means that the observer equations remain unchanged

d

dt
X̂ = f̂(X̂, h(X))

where X̂ = ϕg(x̂) and X = ϕg(x). The asymptotic observer (2) is clearly
invariant.

Assume that we have a set of p vector fields wi(x), i = 1, ..., p on the state
space that are invariant with respect to G. This means that for any g ∈ G and
i ∈ {1, ..., p}, we have wi(ϕg(x)) =

∂ϕg

∂x (x) ·wi(x). Consider now a set of p scalar
functions of the form Ji(x̂, h(x)), i ∈ {1, ..., p}. Assume that they are invariant,
i.e., for all g ∈ G, for all x̂ and x, we have

Ji(ϕg(x̂), h(ϕg(x))) = Ji(x̂, h(x)), i ∈ {1, ..., p}.
Then the following system

d

dt
x̂ = f(x̂) +

p∑
i=1

(Ji(x̂, y)− Ji(x̂, ŷ)wi(x̂) (4)

is an invariant observer. This is a direct application of the definition. Notice
that we do not address here the convergence of x̂ towards x. We just consider
the invariance.

3 Invariant estimation errors

Definition 3 (invariant estimation errors). Assume the smooth dynamics
ẋ = f(x) is G-invariant. Take an output y = h(x) of dimension m. An invari-
ant estimation error is a set of m smooth functions of the estimated state x̂ and
of the measured output y, I(x̂, y) = (I1(x̂, y), ..., Im(x̂, y)), such that:
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1. for all g ∈ G, for all x̂ and all x, we have

I(ϕg(x̂), h(ϕg(x))) = I(x̂, h(x))

2. for each x̂, the map y �→ I(x̂, y) is a diffeormorphism with I(x̂, h(x̂)) = 0.

Let us see now how to construct such invariant functions I. First we need
the following definition.

Definition 4. Assume the smooth dynamics ẋ = f(x) is G-invariant. Then
the output y = h(x) is G-invariant if the action of G on x admits a well-defined
restriction on y, i.e., for g ∈ G, there exists an output transformation "g on Y
such that h ◦ ϕg = "g ◦ h.

With X = ϕg(x) and Y = "g(y), the definition reads Y = h(X). The output
y of (1) is G-invariant since ϕ(M1,M2) yields to

Y =
C1

C1 + C2
=

M1c1
M1c1 +M2c2

=
y

y + M2
M1

(1− y)

which defines an action of G on the output space.
This definition means that the action of G on the state-space and the output

map h must be compatible. Only special output maps h yield G-invariant
output: for example (1), the map h(c1, c2) = c1 + c2 does not define a G-
invariant output.

Theorem 1. Take a G-invariant dynamics ẋ = f(x) and a G-invariant output
y = h(x). Assume that for some x0, the smooth map

G � g �→ ϕg(x)

is of rank r = dimG around g = Id with r ≤ n = dimx. Then, locally around
(x0), there exist m = dim y invariant smooth functions Ii(x̂, y), i = 1, . . . ,m
that form an invariant estimation error.

The assumption on the action of G implies that G acts effectively (i.e., the
isotropy group is trivial or discrete). This is not really a limitation. The local
character of this result is not a strong limitation either. When G is an analytic
connected group with an analytic action, the Ii’s are analytic functions when h
is analytic.

Proof. We use here the moving frame method recalled in appendix A. In our
case the manifold Σ corresponds to the (x̂, y)-space and the local coordinates ξ
to the components of (x̂, y). The action of G on this space is well defined since
y is a G invariant output. To any element g ∈ G corresponds the following
transformation

(x̂, y) �→ (ϕg(x̂), "g(y)).
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The constant rank assumption implies that elements of G close to identity act
regularly around (x0, y). The fiber coordinates ξf can be formed via subset of
the components of x̂. Since a = ψf (x̂,Ξf ), this means that the transformation
Y = "(y, a), corresponding to g ∈ G associated to the parameter a, reads

Y = "(y, ψf (x̂,Ξf )) := Υ(y, x̂,Ξf ).

It is obvious that for any normalization Ξ0
f , the m scalar functions in

Υ(y, x̂,Ξ0
f )

are invariant. Moreover, the rank of Υ with respect to y is maximal and equal
to m. It will do to use

I(y, x̂) = Υ(y, x̂,Ξ0
f )−Υ(ŷ, x̂,Ξ0

f )

to obtain a set of local invariant output errors.

For example (1), the invariant error is

I(x̂, y) = log
(

ŷ

1− ŷ

1− y

y

)

4 A class of chemical reactors

4.1 The system

We consider a continuous stirred tank of volume V with n species of concentra-
tions (c1, . . . , cn) :

V
d

dt
ci = F (cin

i − ci) + ri(c1, . . . , cn)

yi =
ci∑n

h=1 ch
, i = 1, ..., n

(F the input flow rate, (cin
1 , . . . , cin

n ) input concentrations). The n species react
according the reaction terms ri(c1, . . . , cn): these n functions are supposed to
be homogenous of degree one. We measure the fractions yi and we want to
reconstruct the state (c1, . . . , cn).

The example (1) belongs to this class of chemical reactors : we have in this
case n = 2 and no reaction terms r ≡ 0.

4.2 Invariant function

Indeed, the system equations do not depend on the units of the concentrations
ci. This system is not strictly invariant with respect to the definition here above.
To be invariant according to the definition, we have also to consider the action
of the scaling group on the input concentrations cin

i , and on the parameters
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hidden in the chemical kinetics ri. With such natural extension, we can say
that such system is invariant under the action of the scaling group defined by

Ci = Mici, i = 1, ..., n

where the Mi are positive constants (group parameters).
To build the observer, we consider the invariant functions of the transforma-

tion group acting on the ((ĉi), (yj))-space. The normalization equations write:

Co
i = Miĉi, i = 1, ..., n

and the solution is given by

Mi =
Co

i

ĉi
, i = 1, ..., n

where (Co
i ) is our reference.

As the group action on the output space is given by

Yi =
Miyi∑n

h=1 Mhyh
, i = 1, ..., n

we get then the following invariant functions:

Hi(ĉ, y) =
Co

i

ĉi
yi∑n

h=1
Co

h

ĉh
yh

, i = 1, ..., n

where ĉ = (ĉi) and ŷ = (ŷi).
A simple combination of these invariant functions yields the following ones

(more symmetric):

Iij(ĉ, y) = log
(
ŷi

ŷj

yj

yi

)
which gives invariant estimation error terms, for all i and j in {1 . . . n}.

4.3 The invariant observer

To design the observer, we use the invariant estimation error terms Iij and the n
infinitesimal generators of the transformation group acting on the system state:

vi(c1, . . . , cn) = ci
∂

∂ci
, ∀i ∈ {1, . . . , n}

since these vector fields are here invariant. We get then the following observer
(k > 0 is a design parameter):

V
d

dt
ĉi =F (cin

i − ĉi) + ĉiri((
yj

yi
)1≤j≤n)

− kĉi log


 n∏

h=1,h�=i

ŷi

ŷh

yh

yi


 (5)

ŷi =
ĉi∑n

h=1 ĉh
, ∀i ∈ {1, . . . , n}
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which is invariant under the action of the scaling group. Notice that when
ĉi = ci, we recover the original dynamics, d

dt ĉi = d
dtci.

4.4 Observer convergence

To prove convergence, we make a change of coordinates:

ξ̂i = log(ĉi) i = 1, . . . , n

The observer equations become :

V
d

dt
ξ̂i =F (Cin

i exp(−ξ̂i)− 1) + ri((
yj

yi
)1≤j≤n)

− k


 n∑

h=1,h�=i

(ξ̂i − ξ̂h) + log(
n∏

h=1,h�=i

yh

yi
)




The symmetric part of the jacobian matrix (with respect to the ξ̂i only) is given
by:

A =
1
V



−FCin

1 exp(−ξ̂1)
0

. . . 0
−FCin

n exp(−ξ̂n)




+
1
V



−(n− 1)k k · · · k

k
. . . . . .

...
...

. . . . . . k
k · · · k −(n− 1)k




The second matrix is negative: it has −nk as eigenvalue of multiplicity n − 1,
and 0 as eigenvalue associated to the eigenvector with all coordinates equal to
1.

The first matrix is negative. Let J be the set of indices {ı1, . . . , ir} such that
for every k ∈ J, Cin

k = 0. Let B = (e1, . . . , en) be the canonical basis of R
n. As

the second matrix is definite negative on the subspace spanned by {ek, k ∈ J},
we get that A is definite negative. This result shows that the observer is a
global contraction (in the sense of [6]) which gives its global convergence. The
observer (5) is thus a global invariant asymptotic observer.

To summarize: the observer is shown to be a contraction when the equations
are written in the coordinates (ξ̂i) and we use the Euclidian metric to define the
symmetric part of the Jacobian matrix. It is equivalent to say that the observer
(5) is a contraction with respect to the following metric:

ds2 =
n∑

i=1

(
dci

ci

)2

=
n∑

i=1

(dξi)2

that is to say a Killing metric of the transformation group acting on the system
state space.
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5 Conclusion

The convergence proof for this class of chemical reactors suggests the following
question: are there links between the following two facts: the observer is invari-
ant; the observer defines a contraction for a Killing metric (a metric where the
group transformations are isometries)?
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A The moving-frame method

To determine the invariant functions we use the normalization technique, which
is also called the moving frame technique of Darboux Cartan (see, e.g., the very
nice presentation in Chapter 8 of [3]).

An example in R
3 The idea is quite simple as we are going to see when

the manifold Σ corresponds to R
3, when the transformation group G acting on

Σ admits two parameters and when the orbits are surface. The normalization
technique relies on the following idea. Under good regularity conditions of the
transformations group, we can find a set of coordinates (ξ1, ξ2, ξ3) such that, as
shown on figure 1, in the directions ξf = (ξ1, ξ2), we are in an orbit, whereas
the transverse direction ξb = ξ3 determines in which orbit we are. So, to know
if two points P and S are in the same orbit, that is, if there is an element g of G
such that S = ϕg(P ), it is sufficient to check that the two points have the same
coordinate ξ3: ξ3 is an invariant function. Any other invariant scalar function
is a function of ξ3.
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P S
g

R

O

ξ
ξ

ξ
1

2
3

Figure 1: Orbits of the transformation group G acting on Σ in rectifying coor-
dinates

Now, we suppose we don’t know this set of coordinates. Denote by (p1, p2, p3)
(resp. (s1, s2, s3), (r1, r2, r3)) the coordinates of a point P (resp. S, R) in some
referential. If P and S belong to the same orbit, there exists an element g ∈ G
such that (in coordinates) :

s1 = (ϕg(P ))1
s2 = (ϕg(P ))2
s3 = (ϕg(P ))3

The problem here is that the three coordinates of S depend on a particular set
of the group parameters. To find the invariant functions, we have to eliminate
the two parameters associated to g. We introduce a third point R on the same
orbit that we will take as a reference. We can then determine the element g(P )
of the group such that R = ϕg(P )(P ). This element is solution of the following
system of equations (normalization equation):

r1 = (ϕg(P ))1
r2 = (ϕg(P ))2

If the implicit functions theorem applies (the rank of this system with respect
to the two parameters associated to g must be 2), then we have :

g(P ) = γ(P, r1, r2)
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The invariant is then given by:

I(P ) = (ϕγ(P,r1,r2)(P ))3

Indeed, I(P ) = r3 and as R and S are on the same orbit, we have also: I(S) =
r3 = I(P ), since ϕγ(S,r1,r2)(S) = R.

The general case Take a group G acting regularly on a manifold Σ of dimen-
sion σ with r-dimensional orbits, r < σ. In local coordinates on Σ, ξ, denote by
Ξ = ϕ(ξ, a) the transformation associated to the element of G with parameter
a. Then the orbit equations (a set of fundamental scalar invariants) are given
via elimination of a once the coordinates ξ = (ξb, ξf ) have been decomposed
into the base coordinates, ξb, of dimension σ − r and the fiber coordinates, ξf ,
of dimension r. The transformation Ξ = ϕ(ξ, a) then reads

Ξb = ϕb(ξ, a)
Ξf = ϕf (ξ, a)

with a �→ ϕf (ξ, a) invertible for every ξ. Denoting by ψf (ξ,Ξf ) the inverse map
(ϕf (ξ, ψf (ξ,Ξf )) ≡ Ξf ), one has

Ξb = ϕb(ξ, ψf (ξ,Ξf )) := ψb(ξ,Ξf ).

Assume that ζ and ξ belong to the same orbit. Then they have the same base
coordinates. This means that, once Ξf has been fixed, to Ξ0

f say (normalization),
one has

ψb(ξ,Ξ0
f ) = ψb(ζ,Ξ0

f ).

In other words, the σ− r independent scalar functions ξ �→ ψb(ξ,Ξ0
f ) are invari-

ant, i.e., for any transformation Ξ = ϕ(ξ, a), we have

ψb(ξ,Ξ0
f ) ≡ ψb(ϕ(ξ, a),Ξ0

f ).
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