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A Lie—Backlund Approach to Equivalence
and Flatness of Nonlinear Systems

Michel Fliess, Jean &vine, Philippe Martin, and Pierre Rouchon

Abstract—In this paper, a new system equivalence relation, et al.[34] on static-state feedback linearization. However, as
using the framework of differential geometry of jets and prolon-  far as dynamic feedbacks are concerned, this approach might

gations of infinite order, is studied. In this setting, o systems o541 serious difficulties, as demonstrated by the following
are said to be equivalent if any variable of one system may be | t le: tak ,th imole int t
expressed as a function of the variables of the other systemeemen ary examplie. take the simpie integrator

and of a finite number of their time derivatives. This is a
Lie—Backlund isomorphism This quite natural, though unusual,
equivalence is presented in an elementary way by the inverted ; ; ;

pendulum and the vertical take-off and landing (VTOL) aircraft. and the invertible dynamic feedback

The authors prove that, although the state dimension is not D=

preserved, the number of input channels is kept fixed. They also

prove that a Lie—Bécklund isomorphism can be realized by an (invertible in the sense of the invertibility of the input—output
endogenous feedbacki.e., a special type of dynamic feedback. mappingu — v). It yields the systeni = ©. To recover the

Differentially flat nonlinear systems, which were introduced by = ] d . d theref
the authors in 1992 via differential algebraic techniques, are Orlginal integrator, we need to pose= v, and therefore two

generalized here and the new notion oforbitally flat systems controlsy; andv, such that; —v, = constant lead to the same

is defined. They correspond to systems which are equivalent answer, which proves that the corresponding transformation
to a trivial one, with time preservation or not. Trivial systems s not one-to-one and that invertible dynamic feedbacks do
are, in turn, equivalent to any linear controllable system with not form a group. Indeed, this remark did not prevent several

the same number of inputs, and consequently flat systems are . o .
linearizable by endogenous feedback. The endogenous linearizing?Uthors from getting a lot of insight into the problem of

feedback is explicitly computed in the case of the VTOL aircraft dynamic feedback linearization (see for example [11], [12],
to track given reference trajectories with stability; simulations and [37] in the second half of the 1980’s and later on [57],

T=1u

are presented. [61], [69], and [72]), but the equivalence question, which is
Index Terms—Dynamic feedback, flatness, infinite-order pro- Of @ more general nature, remains partly open.
longations, Lie—Backlund equivalence, nonlinear systems. For systems that are reminiscent of Fliess's differential
algebraic approach [14], [15], namely systems that can be
i ; b wMY =
| INTRODUCTION expressed in the fornd'(x, &, w, %, ---, u'"’) = 0, where

u{") denotes the time derivative ofth order of the input
HE LINKS between system equivalence, system clagector +, and where F is a polynomial vector in all its
Siﬁcation, and feedback deSign have been clarified aﬁﬁbumentS, the present authors have proposed in [22] the
widely exploited for many years. To mention but one exanotion of endogenous equivalencehich circumvents the
ple, issued from the now well-admitted differential geometriﬁbove prob|ems and provides a natural framework to the
approach to nonlinear systems [36], [58], static-state feedbaglgdy of system classification and linearization by a restricted
and diffeomorphisms provide us with a natural transformatif)ass of dynamic feedbacks calleddogenousin this setting,
group preserving the state manifold. Two systems are sgjift simplest class is made up of flat systems. As a result,
to be equivalent with respect to this group if they can bgifferentially flat,or simplyflat systemsare those systems that
transformed into each other by some element of the group. Thi& equivalent, in this sense, to a system without dynamics,
approach has produced numerous interesting results includiigcribed by a collection of independent variables, fthe
the seminal ones of Jakubczyk and Respondek [40] and Hiput,having the same number of components as the number
of control variables. Since linear controllable systems with the
Manuscript received May 12, 1996; revised June 26, 1997 and Janus@me number of inputs are also proved to be equivalent, in this

28, 1998. Recommended by Associate Editor, M. DiBenedetto. This Wogénse' to such systems without dynamics, dynamic feedback
was supported in part by the European Commission’s Training and Mobili .
of Researchers (TMR) under Contract ERBFMRX-CT970137, the G.D.HN€arization results are deduced. _ _
“Medicis” of the C.N.R.S., and the P.R.C.-G.D.R. “Automatique.” In this paper the endogenous equivalence is generalized to
o . Fliess Is with the Centre de Matiatiques de Leurs Applications, get rid of the system differential algebraic limitations and to
cole Normalle leure ae Cachan, achan, France. . . .
3. Lévine and ;?r Martin are with the Centre Automatique et Sy, be able to embrace, in particular, systems defined by a general
Ecole des Mines de Paris, 77305 Fontainebleau, France (e-m&l™° vector differential equation of the formt = f(x, w).

IevlineR%ﬁgﬁ;)enn?smvsi{r?.the Centre Automatique et 8yses,Ecole des Mines The differential-algebraic framework is now replaced by a
de Paris, 75272 Parisédex 06, France. ’ differential g(_eomemc one (see [16], [20], [21], and [24]). A
Publisher Item Identifier S 0018-9286(99)03940-9. related and independent approach has also been developed

0018-9286/99$10.0Q1 1999 IEEE



FLEISS et al: APPROACH TO EQUIVALENCE AND FLATNESS 923

by Pomet [61]; see also an algebraic alternative approach doympute the dynamic feedback that exactly linearizes a flat
Jakubczyk [38], [39]. Since dynamic feedbacks require thsystem.

use of time derivatives of arbitrary order, we are naturally In spite of the tight links relating flathess and dynamic
lead to the recent differential geometric theory of jets arféedback linearization, the two concepts are indeed distinct.
prolongations of infinite order, developed, in particular, ifrollowing [50], we may argue that, though any flat system can
Russia, by Vinogradov and his school [76]-[78], which ibe feedback linearized using endogenous dynamic feedbacks,
already a mainstay in several parts of mathematics and phydlesness is a property of a system, and more precisely of
(see [2] and [60]). its trajectories. It does not imply that one intends to then

The presentation is as elementary as possible, thankstremsform the system, via a dynamic feedback and appropriate
five introductory examples, all having the same number, twohanges of coordinates, to a single linear system. When a
of input channels: the vertical take-off and landing aircraftystem is flat it is an indication that the nonlinear structure
(VTOL), the VTOL with a model of the actuators, the explicitof the system is well characterized and one can exploit that
and implicit inverted pendulum, and the Huygens oscillatiostructure in the control design. Let us stress that some of the
center. With only two of them being equivalent by diffeomost useful properties of flathess and flat outputs concern
morphism and static-state feedback, we demonstrate that thfey system trajectories and find an immediate application in
are all equivalent in the following generalized sense: for a@rajectory generation and tracking. Precisely, according to the
arbitrary pair of the above systems, to the trajectories generatied output properties, system trajectories exactly joining a
by one system, there locally corresponds the trajectories of twlection of points with given velocities, accelerations, jerks,
other in a one-to-one way, or, more precisely, all the variabletc., are easily generated (see [22]), thus replacing difficult
of one can be expressed as a function of the variables of thenamical computations by static interpolation techniques.
other and a finite number of their time derivatives. Moreover, a tracking architecture for which the controller is

In the differential geometric language under consideratiofixed once and for all, independently of the particular trajectory
this equivalence, which is perhaps unusual in control theotyp, follow, may be obtained with stability (see [16]). Finally,
is well-known in physics and often receives the name d&ft us mention the major difficulties to obtain computable
Lie—Bdcklund isomorphisnfi2], [35], [80]. Moreover, as will criteria for checking flatness. Note that, in this perspective,
be seen on the five introductory examples, it naturally fits withe fundamental results of [34], [40], and [73] may be seen
important physical considerations and confirms the fact that ths the first sufficient conditions for checking a special kind of
classic geometric state space approach, where the state Ila@mess. Nevertheless, a large number of engineering examples
in a fixed finite-dimensional manifold, and where the allowefftom many fields stemming from mechanics to chemical or
transformations (diffeomorphic changes of coordinates abiblogical processes, enhance the authors’ belief that, since flat
feedbacks) must leave this manifold invariant, is too restrictivamitputs contain all the required dynamical informations to run
for our purpose. Here, we prove that only the number of inpthe system, they may often be found by inspection among the
variables is preserved by LiedaBklund equivalence (see als&key physical variables. This feature is particularly evident on
[61)). the VTOL example (see [31], [45], and [49]), whose flat output

However, since, again, Lie-&8klund equivalence does notis made up with the coordinates of the Huygens oscillation
preserve the state dimension, it can be used to decreasectrger and in the numerous applications to food engineering
system complexity by reducing both the number of variablgsocesses [5], car equipment design [6], car parking [16], [22],
and equations. This particularly important property is extefB7], crane control [22], [27], [44], tracking observers [28],
sively used all along this paper to extract a minimal set ofiagnetic bearings control [43], aircraft [48], [49], and heli-
relations (couplings) between a minimal set of variables thedbpter control [55], induction motors [53], chemical reactors
contain all the original informations on the system trajectorief4], [65], etc., recently treated by this approach.

In this setting, a system is said to be differentially flat This point of view is here enhanced by sketching both
if it is Lie—Backlund equivalent to drivial system,i.e., a the motion planning and the feedback design of the VTOL
system without dynamics, or, in other words, described lBxample, and some simulations showing the aircraft closed-
a set of independent scalar variablgs, - - -, v, } for which loop behavior in the presence of errors are presented.
no relations exist between their derivatives of any order, Our paper is organized as follows. We first describe care-
being the number of inputs. This set of variables is calledfally our five examples. The calculations for showing their
flat output A flat system is also proved to be equivalent to angquivalence are presented in order to familiarize the reader
linear controllable system (of any dimension) with the sameith the infinite-dimensional differential geometric language.
number of inputs. We also generalize this definition to includehe second section introduces our infinite-dimensional geom-
time scalings by introducing the notionsabital equivalence etry by associating to a “classic” dynamiés= F(z, u) a
andorbital flatnessDifferentially flat and orbitally flat systems manifold with local coordinates the componentszoénd the
are proved to satisfy the strong accessibility property due time derivatives of any order of the componentswofThe
Sussmann and Jurdjevic [74]. formalism is developed in such a way that it encompasses

Our main result explains the relationships betweamonlinear control systems which are raopriori written in the
Lie—Backlund isomorphisms, endogenous feedbacks, aaldove form, butas a mixture of differential and nondifferential,
the classic setting of dynamic state feedback. One of the., implicit equations (remember that such a situation often
main consequences of this result is a constructive methodoeurs in practice; see, e.g., [7], [22], [27], and [54]). The
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Fig. 1. The VTOL aircraft in the vertical plane.

equivalence we have in mind then becomes in this settiithe equations of motion written in terms of the center of
a change of (infinite-dimensional) local coordinat@sivial massC are then

systems and linear controllable systems are then introduced o _ _ .

and flatness is defined. We also introduebital equivalence mVe =11 + Iy +mg

and orbital flatness where time-scaling is allowed. Various Fo=CMANF+CMsyAFy

properties of this equivalence such as the invariance of the

number of inputs, are proved. The strong accessibility propetgpereVe is the velocity ofC' andd¢ is the angular momen-
of a flat system is then deduced. The last section establishig® aboutC. Projecting these equations in the fixed axes, we
the connection between LieaBKlund isomorphisms and en-get
dogenous feedbacks, a special type of dynamic state feedbacks. .. . .
The controller and simulations of the VTOL example are then "¢ — (Fy + Fb) cos a sin 6+ (I — I) sin a cos 6
presented, followed by a conclusion. mic = (I + Fy) cos o cos 6 + (I3 — 1) sin v sin §

—mg

JO =(Fy — F1)(l cos e+ h sin «).
Il. FIVE INTRODUCTORY EXAMPLES

Setting
A. The VTOL Example o < sin. )i
We consider, as in [31], a very simplified VTOL aircraft COZSC;’S a+hsin o/ mg
whose evolution is restricted in the vertical plane (see Fig. 1 Uy = (F1 + F»)
and the notations therein). L&t {; k) be a fixed inertial frame ; 9 b si
and ¢, 7, k) be a moving frame attached to the aircraft (body gy = LCB Ot hsn (Fy — FY)
axes). We denote bg the angle between the moving frame ze J
and the inertial one. T =—
The forces acting on the system are ch
z =
— - g
o= (COS cuky + sin O‘“’)Fl the equations of motion finally read
Py = (COS ok, — sin O@)F2 & =y sin § — euy cos 0
mg= — mgk ¥ =y cos 0 +cuy sin 6 — 1 1)

0 =1UuUs.
where o f's a f's)gd :nglr(]e. Th%wel%h}t;g is applied a.t tf;e The dimensionless parameterwill in general be small be-
cen:_erdo mhas ' t;/[t ruzt]sv[l ar;] 2 are, respectively, 5 se the angler is small by construction. The normalized
applied at the pointsif, and M, where lengths z and = represent actual lengths divided by the

. . . . intensity g of the gravitation field, hence a normalized length
CM, =l — hky, CMso = =iy — hky. of 1 represents an actual length of about 10 m.
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The two control variables; andu, are proportional to the strongly accessible (see, e.qg., [36] and [58]), this equivalence
vertical acceleration and torque, respectively, applied to thelation is indeed an unusual one. Moreover, it may involve
center of mass. From now on, (1) will be referred to as thaerivatives of the input coordinates [see (4)]. The above

VTOL model. invertible mapping® is called alLie—Backlund isomorphism
or, sometimes, d.ie—Bdcklund transformationand the as-
B. The VTOL with a Model of the Actuators sociated equivalence relation, lae—Backlund equivalence

We now add to (1) a model of the actuators, name ee Section IlI-B below). Note that since the model of the
differential equations that describe the way the accelerati ftuators can be realized from (1) by the invertible dynamic

and torque are produced eedback

()

¥ =y sin 6 — euy cos 0 {711 =(w, &, 2, 2, 0, 0, ur, uz, v1, v2)
z =u1 COS 9+€U,2 sin @ —1 7‘1'2 = ’72(‘/57 '/tv 25 7:7 97 97 Uy, U2, V1, U?)
0 =us ] (2)  the above equivalence relation can be interpreted in terms of
w =z, &, 2, 2,0, 0, uy, ug, v1, v2) dynamic feedback. Precise statements concerning this aspect
may be found in Sections IlI-B and Il1I-C. We will see later
_ . ~on that the VTOL is flat, or, in other words, equivalent to a
The smooth functions;, ¢ = 1, 2, which need not be specifiedcontrollable linear system. Therefore, (2) is also flat by the
here, are such that the mappit@, v2) — (=, &, 2, %, 6, transitivity of the equivalence relation.

U2 :72(-/57 -/tv Z, 7:7 97 97 uy, U2, V1, UQ)'

0, u1, u2, v1, v2) is invertible for every(z, &, z, z, 6, 6, uy, It is interesting to remark that this equivalence concept is
uz) where the vector-valued function stands for the vector strongly related to Cartan’s absolute equivalence, as noted
(71, y2)* by Shadwick [69], and then Sluis [71], and Murray and his

According to this invertibility, and since the variables usegolleagues [57], by interpreting in the context of controlled
to describe (2) can be expressed in terms of the variabless9btems the original work of Cartan [8], [9] (see [60] for a
the VTOL system and a finite number of their derivatives, fiecent and nice book on this subject).
seems natural to call this new extended system equivalent t®Remark also that if, in place of a model of actuators of the
(1), though its state dimension is different. first order, we had a higher order dynamic extension, using

Clearly, to every integral curvé of (1), defined by only the system variables and a finite number of their time

. . . derivatives, the same result would still hold true, with the
te C(t) = (x(t)’ (1), 2(t), 2(t), 6(2), 6(2), wa (D), “2(t)) Lie—Backlund isomorphisn® involving higher order deriva-

for ¢ in an open interval of IR, there corresponds an integraf'ves of uy andus. Therefore, it may be more convenient to
curveC of (2), defined, on the interval, by ¢ — C(¢) = (#(t), define such mappings as ranging the manifold with coordinates

F(E), 2(8), 2(e), 6(1), 8(0), i (8), da(t), vi(t), va(t)) (s, 5,0, 6, iy -y, o, )
o(t) =x(t), w(t) = i(?)
2(f) = 2(t) (t) = 4(t) into itself. This implies in turn that all the notions of systems,
: N (3) manifolds, vector fields, etc. may also be expressed in this
0(t) =6(t), ) =6(t setting. This is precisely what we have in mind.
b(t) =b(t)
u1(t) = w1 (t), ) = uo(t
() () () 2(t) C. The Inverted Pendulum Example
and We consider an inverted pendulum in the z)-plane (see
v1(t) 1 . . ; [22] and [45]), of massn, controlled by means of an exterior
= t t), 2(t), z(t), 6(t), 8(¢ — ’ ’
<v2(t)> 7 (x( ) &(8), 2(8), 2(0), 6(1), 6(0), force I’ applied to the pointd located at a distancé from
. . the center of mas§’ of the pendulum (see Fig. 2). Lef, (
t t t t)]). 4 >, o
w1 (8), wa(2), ua(t), to( )) @) 7. k) be an inertial frame. The forcé reads in this frame

We have thus constructed a mappigending the integral F = F,7+ F.k. The force applied to the center of mass is
curvesC on the integral curve€. Moreover, & preserves the sum ofF' and the gravitational fieldF, 7+ (£ — mg)k.
tangent vectors since to the tangent vedidfdt)C(t) there Denote by(zc, O, zc) the coordinates of’. We have
corresponds the tangent vectal/dt)C(t).

Conversely, it is immediate to check th@tis invertible: mic = Iy, mzZc = F, —mg.
every point of the integral curvé can be uniquely expressed
as a function of’. This new (inverse) mapping also preserveBenote byd the angle between the pendulum and the vertical
tangent vectors. It results that the trajectories of (1) and (@Xis (parallel tok) and J the inertia of the pendulum. The
are two different descriptions of the same object. We thus hawvector CA thus readsC’A = —d sin 67— d cos 6k and the
the right to declare that (1) and (2) aequivalent angular momentum about is given by

Since the above trajectories live on manifolds with different )
dimensions, and since their state representations are both J07=CANF = d(F. sin 6 — F, cos §)7.
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We have thus obtained
mﬁfc = Fm

mzc =F, —mg

J .
EG:FZ sin @ — I, cos 6.
Setting
rTc zC Fm
r=— Z = ) wy = —
g g mg
r, J . , . .
Wy = — — 1, £ = —— Fig. 2. The inverted pendulum in the vertical plane.
mg mgd
yields intrinsic in the sense that it does not depend on the choice of
F=w, input, state, and other system variables.
S —w (©) The equivalence of (9) to the VTOL model (1) may be
< = 2

N proven in the same manner by using the relations (8).
e = —wy cos 0+ (w2 + 1) sin

wherew, andws are the components of the input vector. W& The Huygens Oscillation Center

call this system the inverted pendulum model. Finally, we consider the following implicit differential sys-
As with the previous example, it is easily seen that them (see [3], [18], [19], and [45]) with four unknown functions

normalized pendulum dynamics and the VTOL dynamics aamd two equations

equivalent in the sense that to every trajectory of (1), with ) ) )

its associated tangent vector field, there corresponds a unique (5 — 1)+ (C—12) =F (10)

trajectory of (6) with its associated tangent vector field, and EC—m)—(E—1m)C+1) =0

conversely. This results from the formulas ) ) i o i
This system admits the following geometrical interpretation.

w; =uy sin 8 — eug cos 8 Let (¢, ¢) and (14, 1») be the coordinates of two point3;
wy =uy cos O+ cuy sin 6 — 1 (") andn, respectively, in théz, z) plane [¢, 7, k) is the inertial
and frame associated ta:(y, 2)]. The first equation simply means
. that the Euclidian distancé(Y, N) from Y to N is equal
uy =wy sin 6 + (w2 + 1) cos @ g) 10 The second equation means that the vector, sum of the
Uy = 1 (—w; cos 8 + (wy + 1) sin 6) (8) accelerationﬁoﬁ/, and of the constant vectds, is colinear to
€ the vectorY N?!
x, z, 6 being the same in both systems. ¢ ¢ -1
Note that since the state dimension is preserved, the above — = (11)
defined mapping C+1 C=m

These equations are satisfied byﬁa single rigid body, in the
vertical (normalized) gravity field-%, free to turn about a
is a diffeomorphism: our notion of equivalence coincides heR®rizontal axis, fixed in the body and paralleljtd” is then the
with the classic equivalence by diffeomorphism and statRe€nter of oscillation (often called Huygens oscillation center)

(357 %, 0, ug, U2) = (I)(xv z, 0, wy, w2)

feedback (see, e.g., [36] and [58]). and N the center of suspension (see [79, p. 132]).
Thus for the VTOL,N coincides withC' (11, = x, v2 = 2)
D. An Implicit Model of Pendulum andY (see Fig. 1) corresponds to
We also consider the following variant of (6), obtained by E=x+¢esin b, {=z+ecosb. (12)

eliminating the control variables; andws o Lo ) )
) Similarly, for the pendulumyV coincides withA andY is the

el = -3 cos 0+ (¥4 1) sin 6. (9) point belonging to the axisiC, corresponding to (12) (see
o . o . . _ Fig. 2).
This is a single implicit differential equation with three un- “anqther property of the oscillation center is that it summa-
known functions(, z, #). Such an implicit differential equa- ;e in a static way, i.e., without integrating any differential
tion is thus calledunderdeterminedThe number of degreesgqation, all the information needed to recover the dynamic

of freedom is 2, i.e., it is the number of input channels: byohayior of the rest of the solid. More precisely, once its

posing = wy andz = w», the system becomes determinedyiectory is given, one can completely recover the trajectory
and the equivalence with the normalized inverted pendulum

is clear. Therefore, besides the fact that the control variablesNote that the physical properties &f are directly translated into the
ified. | . v th inf . implicit differential systen10), whereas decoding them from an explicit state-
are not specitied, It contains exactly the same information ?pﬁce realization would not be that easy (see also [27] for a more detailed

(6). This shows in particular that our notion of equivalence isscussion on this subject).
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to be followed by the center of mass and the correspondingComparing this example with the second one, we find that,
force to apply: from (11) and (12), we get in (10), the control variables ame, and 1». Remember that
. xz = 1, and z = 1, and, by (12), we haveéy, = w; and
tan 6 = - — L 2 = wo, Where(w;, ws) is the input of the pendulum model
(=% (+1 (6). Thus, (10) may be seen as a reduced model where we have
or removed the double integrators of the VTOL or the inverted

) pendulum.

To summarize, the first three examples are given by state

representations with different dimensions, the first and the third

¢ example being described by six variables, whereas the second
- " is eight-dimensional, and the last two examples are not given
()2 +(C+1)? in classic state variable representation. However, they are all

E+1 equivalent as far as we accept to deal with coordinates and a
= = . finite, but a priori unprescribed, number of their derivatives
(€2 +(C+1)? with respect to time. This is why, in the first example, we need
to consider coordinates of the form

¢ <t, T, Uy, 2, Uz, 0, vg, (ugm))mzo’ (UéMZ))M220>

(€2 +(C+1)2 wherew,, v., andwvg correspond to the velocity of, =z, and
C+1 6, respectively, and Whereg“j ) corresponds to the derivative
z=(—e¢ - " (13)  of orderp; of w;, j = 1, 2, with respect to time.
(2 +(C+1)? The manifold associated to (1) is thus the Cartesian product

# = arctan L
C+1

sin 8 =

cos 0 =

Finally, we have

r=§&—¢

and the force is easily deduced by twice differentiating the RxRxRxRxRxSxRxR® x R®.

expressions ofr and . This property, calleddifferential

flatnesswill be studied in greater details in Section IlI-C. A simple introduction to the basic properties of such infinite-
To prove the equivalence of (10) to (6) or (1), by transitivitydimensional differential manifolds is provided in the next

it suffices to prove that (10) and (9) are equivalent. Startirfgction.

from (10), differentiating twice (12), we get

T - o lll. I NFINITE-DIMENSIONAL DIFFERENTIAL GEOMETRY
E=i+¢eb cos § —eB” sin 0

(=%~ ebsin § —et? cos 6. (14)  A. Infinite Number of Coordinates
Taking into account the fact thdt— x = ¢ sin § and{ — z = 1) Explicit State Variable Representation€onsider the
€ cos #, we have dynamics
E(¢—2) = (C+1)(E ~2) &= f(z, u) (16)
= 5(5“‘305 6 —(C+1)sin6) where f is smooth on an open subs&t x U ¢ R" x R™,
=e(e@+ % cos §— (+1) sin 6). x is the state, and is the control input.

. The mappingf is in fact an infinite collection of vector
Therefore, if (10) holds true, then (9) does too, and converseﬁélds parameterized by. More precisely, to define an integral

which proves the equivalence. ! o >
As a consequence, all the variables of (6) or (1) can t():élrve of (16), we not only need to specify the initial condition

expressed, in an invertible way, in terms&f¢ and a finite *-° attimet = 0, but also the smooth time function- u(?)
nu?nber of,their time derivativeé £ ¢ ?QC Indeed. in on a given time interval. This infinite-dimensional dependence

the pendulum case, it suffices to compute— & andws — 3 on the inputu is npt well-adapted when considering dynam_ic

by differentiating tvx;ice the expressions sfand z ~  feedback. Accor(_jlng to 'Fhe examples of_the precedlng_ section,
“ we develop a slightly different standpoint where the integral

curves of (16) are described in a more compact way as smooth

) .
wy = % E—¢ - 3 - functionst — (z(t), w(t)), parameterized by initial conditions
! ()24 (C+1)2 only. More precisely, we consider initial conditions in the form
. of the infinite sequencé&, = (x¢, wo, %o, -+ -, ué”), o),
wo = d_2 (—e C+1 (15) where the derivatives of. of any order at timet = 0 are
dt? ((5)2 N (<:+ 1)2 noted ué”), with ;4 > 0. We are therefore led to complete
the original coordinategz, ») by the infinite sequence of
which involve derivatives of and ¢ up to fourth order. coordinateg = (x, u, @, - -, ut, .- .) € X xU xR, where

Accordingly, in the VTOL case, it suffices to use (8) tave have denoted bR, = R™ x R™ x - - -, the product of a
obtainu; andwus, thus also involving derivatives of and{ countably infinite number of copies @&™. In this context, a
up to fourth order. smooth function is a function smoothly depending on a finite
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(but arbitrary) number of coordinates. Then, if we prolong thiat a function issmooth,or C=°, if it depends on a finite but

original vector fieldf as arbitrary number of variables and is smooth, @, in the
L usual sense. In the same way a mappingR;> — R;" is
1) = (f(@, w), a4, ) smooth if all of its components are smooth functions.
(16) reads Notice also thatR;; equ_ipped with the Fthet topology
) lacks many useful properties (see also [80]); very useful and
E=F() (17) familiar theorems in finite-dimensional analysis (see, e.g., [1]

) i . _ and [13]) such as the implicit function theorem, Frobenius
with £(0) = &. Therefore, (17) defines a vector field, in thenegrem, or the straightening out theorem no longer hold true.
classic sense, on the infinite-dimensional manif&dldx U x We can also define manifolds modeled B using the

o>
Ry, standard machinery. The reader not interested in these techni-

The same conclusion is reached in another way, by considjjities can safely ignore the details and will not lose much by
ering the next Lie derivative formula: take a smooth f“nCt'OFéplacing “manifold modeled ofR=" by “open set of[R%."

h, i.e., smoothly depending om, «, and a finite num- -

ber » of derivatives ofu. We adopt the classic notations gaomark 2: We saw above how a “classic” control system
— yn A3 K)o, (b D) — ' o I )

(8{;/835)]‘ —(k)zi(zkgr(gh/axz)ﬁ Sl (_ah/_a“( D= of the form (16) fits into our definition. There is nevertheless

22i=1(01/0w;"yu;" . The time derivative ofh along a an important difference: we lose the notionstéte dimension

trajectory of (16) is given by (see the VTOL examples with and without a model of the
dh  Oh ah Ih actuators as another illustration of this aspect). Indeed
d_:a_ +a—1),+"' WU(T—H) (18)
t dr u u i=flz,u), (,weXxUCR'xR" (21)

at every point(z(t), u(t), u(t), ---, u(t), ---). Note that,

thoughh depends only on derivatives afup to orderr, the and

coordinatex"*t1) is required, which is one more motivation &= f(z, u)

to consider the coordinates made up with the whole sequence . ’

of derivatives ofu. u=v (22)
This formula may be interpreted as the Lie derivativehof

with respect to the infinite-dimensional vector field

(x’ w u®, 4@, ) . F(a:, w u®, @, ) F(gz:7 u, u @, ) — (f(a:, w), uV, u®, )

= (f(% w), u®, P ) (19) in our formalism: indeed the mapping — (x(t), u(t))
is a trajectory of (21) if and only if the mapping —
or, with notations easily understood from the Lie derivativée(t), u(t), %(t)) is a trajectory of (22). This situation is not

now have the same descriptigX x U x IR7>, F'), with

e

formula (18) surprising since the state dimension is of course not preserved
P oo P by dynamic feedback. On the other hand we will see that there
F(a:, u, u | u®, ) = flo,u) o+ > ulrtD . is still a notion ofinput dimension n
9z =0 Julr Example 1: Thetrivial system(IR;”, F},,), with coordinates

. @)y =) @ = @Y ) @ = @
Note that each component df is a smooth function, i.e., yr(g)), ... and vector field

depends smoothly on a finite number of coordinates.
Therefore, to the controlled system (16), whefeis a r, (y7 y D @ ) — (y(1)7 ¥, ) (23)
family of vector fields parameterized hy, we substitute the
following system definition with a “true” vector field on angr with the differential operator notation
infinite-dimensional manifold.
Definition 1. A classic systenis a pair(X x U x R, F N (2 - vit1) O
where F is a smooth vector field o ><(U x IR, ) Eom (y’ y . ) - Z > y Y 9y (24)
Notations: All along this paper, we shall use the following =t =0 o

notations: u® = u, v = 4, @ = 4, .-, W = describes any system made upsefindependent chains of
(u®, @, ... uM) for everyk, andw = (u(®, ), ... integrators of arbitrary lengths, and in particular the direct
Remark 1: To be rigorous we must say something of theansfery; = u;, i =1, ---, m. m

underlying topology and differentiable structure B, to Example 2: A (classic) linear system with: input channels
be able to speak of neighborhoods and smooth objects. TRislescribed byIR™ x IRZY, L) with the infinite vector field
topology is theFrechet topologysee, e.g., [30] for details), I, given by

which makes things look as if we were working on the product -

of k& copies ofIR™ for a “large enough’k. For our purpose it N\ 0 4y 9
is enough to know that a basis of the open sets of this topology (w, @) = (Az + Bu) ox + Z wt Au)
consists of infinite product§, x U; x - -- of open setd/; of
IR™, all but a finite number of them being equall®R™, and where A is ann x n matrix andB anm x n matrix. [ |

=0
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2) The General CaseAs suggested by the implicit rep-the submersionr is just the projection(z, w) — = from
resentations of the pendulum (9) and oscillation center (18) x U x IR;; to the trivial system(IR;7, F,,,) with F,,, =
of Sections II-D and II-E, it may be interesting to generaliz®" ., u*+Y(9/0u®)). [
the above considerations to systems without reference to thgyample 4: In the coordinategz, v,, gm)'
parUcngr sFate variable repr_esentatlon we are working Wlthuéuz); 41, p2 > 0), the vector field associated to the system
Considering the vector field?” of (20), it is made up (

1) is given b
with a drift part f(z, »)(8/9z) and an infinite control part Jis g Y

Z, vz, 0, ve, u

o u(u-ljl)((.?/au(u)). The infinite control part may be seen ,, _, - 9 + (1 sin 6 — eup cos 0) K o d
as the projection of” by the projection mapping: X x U x Oz Ovy 9z
RY — U x Ry?, wheren(z, u, u, i, ---) = (u, @, i, ). o 9 9 K
For anyw € U x RS, (@), which may be identified +(ur cos 0+ eup sin 6 —1) g0 T 50 T2 5y,

with the state spac#, is finite-dimensionalr—*(w) is called (u+1) O (pot1) O
a fiber. Thus = induces a structure ofibered manifoldon + Z " + Z U2

the manifoldX x U x IR;;, with finite-dimensional fibers of
constant dimension (see [1] for a discussion of these notioBgnilar expressions can be easily obtained for the vector fields
in the finite-dimensional case). We now use this property as@érresponding to (2) or (6), which correspond to a different

guideline for a general definition. A submersion is a mappinghoice of submersion. The vector field associated to (9), in the

. (26)
w10 augﬂl) p2>0 auéMZ)

which, in suitable local coordinates, is a projection. coordinates(, vg, x, &, &, -+, 2, 2, 5, +++), iS
We consider a pai{M, F') where M is a smooth man-
: ; Coel - ; g 1, . . . g
ifold—possibly of infinite-dimension—andi” is a smooth Vo = + —(—i cos 04 (34 1) sin §) —
vector field on M. This pair does not generally define a e Vo
system in a satisfactory way since, for instance, the number = (u+1) 7] = (1) a
of input channels may be infinite. Further assumptions are +Z * Az + Z # Az(m)” (27)

needed to guarantee th&t depends only on a finite number #=0 #=0

of independent input channels, as in the classic case. As we have seen in the first section, the integral curves of (26)
Definition 2: We say that the paifM, F) is a system and (27) are transformed into each other by a smooth mapping

if, and only if, there exists a smooth submersianto and the respective tangent vectors are transformed accordingly.

the trivial system (IR;?, F;,)? with global coordinates Therefore, the same transformation should change the vector

u = (u,u, i, ---), such that every fibet = =n—(w) is field (26) into (27). The underlying equivalence relation will

finite-dimensional with locally constant dimension for everye precised in the next section. [ |

. Remark 3: Our definition of a system is adapted from the
As a consequence of the definition, a local system abtion of diffiety, due to Vinogradov (see, e.g., [76]), which

coordinates is given by = (¢, w), with ¢ € IR" for some deals with some questions on systems of (partial) differential

n, and with them-tuple v playing the role ofm independent equations. By definition, a diffiety is a paitM, CT M)

input channels. A control system locally looks like an ope(see, also, [80]), whera1 is a smooth manifold—possibly of

subset ofR™" x IR;> with vector field infinite-dimension—and’T M is aCartan distributionon M,
9 9 namely an involutive finite-dimensional distribution owt.
F(&) =g(¢, uw) 3 + Z D a) (25) Remember thainvolutive means that the Lie bracket of any
< v>0 u two vector fields ofCT M is itself in CT M (see, e.g., [1]).

As we are only working with systems with lumped parameters,
hence governed by ordinary differential equations, we consider

of coordinates. Atrajectory of the system is a mapping— ... .. : : . o .
— el X diffieties with one-dimensional Cartan distributions, which are
&(t) = (C(t), w(t)) such thaté(t) = F(&(t)), or equivalently thus always involutive.

¢ = g(¢, w). Note that the existence of a local solution to

. . S o A similar definition of a control system by an infinite vector
this differential equation is once more implied by the fact th Iteld (18) is also introduced in [61]. =

g depends only_ on a finite numbe_r .Of cc_)ordln_ates, Wher_e t until now, we have chosen to single out a particular vector
classic local existence result on finite-dimensional manlfolqs . . . L
ield rather than work with the one-dimensional distribution

apply. ﬁ spans. The difference is simply explained in terms of time

Note that our d?f'n'tlon .Of syste_m does not dIStInguISsc%ling: the distribution spanned by the vector figldnoted
between state and input variables since they are both deducé . . A
an(f’), is made of vector fields of the fornt’, = ~.F

from the submersionr which is assumed to exist, but not°P ) . ,
fixed a priori. where~ is a smooth function oo\M. Therefore, changing’

Example 3: For the classic systefiX x U/ x IR>>, I") with ?nto Fy can be interpreted as the time-scalig/dt = 1/7
local coordinateg = (x, @) = (x, u, @, i, ---) and in a neighborhood of a point Whe_re # 0. Note that this
time change may depend on a finite humber of components
F) = f(z, u) 9 +Z L+ 9 of & Indeed,d¢/dr = v(£)F(&) becomesds/dt = F(€).
ox = ou®) Though not always necessary, it is often useful to introduce
B an additional coordinate, corresponding to time, to deal with
23ee Example 1. such scalings and the original manifold is thus replaced by

where all the components gfdepend only on a finite number
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R x M with coordinategt, £). The vector fieldF is, in this because a component éf depends only on a finite number
case, replaced byd/dt) + F. Thus, sincespan((9/dt) + of coordinates.

F)y = {7((8/0t) + F)|y € C*(R x M),y # 0} is a Now if the vector fieldsF" and G are ®-related (cf. [1])
one-dimensional distribution, denoting by a local basis, at (p, ¢), i.e.,

the diffiety (R x M, span((8d/dt) + F')) corresponds to

the differential systemit/dr = ~, dx/dr = ~F, which is G(P(¢)) = 9¢
equivalent todz/dt = F, ~ corresponding, as before, to the o€
time-scaling. Therefore, the above definition can be sligh Y

: > 1 . slightfy, a1 ¢ ighborh . th
generalized, to cope with time-varying systems, by saying thatr all ¢ in-a neighborhood o, then

(&).F()

a system is a diffietyR x M, endowed with a one-dimensional C(E) = G(R(E()) = G(C(2)

distribution and a submersiento the trivial diffiety R x IR;?,

inducing a fibration ofR x A1 with finite-dimensional fibers which means thatt — C(t) = ®(&(t) is a trajectory
of locally constant dimension. of (N, G). If, moreover,® has a smooth invers& then

Remark 4:1n place of the distribution spanned by ouipbviously G, I are alsoU-related at(q, p), and there is a
vector field /', we could have worked witltodistributions |ocal one-to-one correspondence between the trajectories of
(cf. [1]), as already done in nonlinear control theory by severgie two systems. We call such an invertildterelating ' and
authors (see, e.g., [29]). On the manifold with coordinates ¢ at the pair(p, ¢) an endogenous transformaticat (p, ¢),

(t, =, u, ud, ---), we can indeed define a 1-form as a which means that the original (endogenous) variables of the
finite linear combination of{dt, dz;, duE”)|i = 1,---,n; system are transformed without creation of nemogeneous
j=1,---, m; > 0}. The finiteness requirement is impliedvariables.
by the fact that, by definition, a smooth function, and therefore This definition can be extended to the time-varying case
its differential, depends only upon a finite number of variableand time-scaling, with endogenous transformations replaced
The codistribution orthogonal to the vector fightis spanned by the more general notion dfie—Bécklund isomorphisms
by the 1-formsv such that F', w) = 0. If F is defined by (20), To this aim, we denote byjpan F) [respectively, §pan G)]
its orthogonal codistribution is spanned by the infinite set die one-dimensional distribution generated by the vector field
1-forms, often callecCartan 1-forms(see, e.g., [68] and [80]) F (respectively,G).
W (1) - Definition 3: The mapping® is said to be d.ie—Bicklund
{dxi — filw, u)dt, du™” —u; dtji =1, -, n; isomorphismfrom [M, (span F)] to [V, (span G)] at the
P e e >0} pair of points(p, q) with p € M andq = ®(p) € N, if
J P M =V $ is a smooth mapping from a neighborhood fin A
A thorough analysis of this setting has been given by v4f @ neighborhood of; in A/, preserving the distributions
Nieuwstadtet al. [57]. m (span F)and e_pgn @), namely such that its tangen_t mapping
T locally satisfiesT'®(span(F)) = span((), and if it has
a smooth inversel from a neighborhood of; in N to a
neighborhood ofp in M with TU(span(G)) = span(F).
) ) ] ) ) ~ Clearly, @ is Lie—Backlund if, and only if, it locally relates

In this section we define an equivalence relation formalizing 5 an elementyG of the distribution span(@) and if

the idea that two systems are “equivalent” if there is &g inverse U relatesG to an elementyF" of span(F). A

invertible transformation exchanging their trajectories. As Wge_Backlund isomorphism is thus an endogenous transfor-
will see later, the relevance of this rather natural equivalenggytion if v = 5 = 1, which means that the time is left

notion lies in the fact that it admits an interpretation in tem\;?nchanged.
of dynamic feedback. Endogenous transformations naturally lead to the following
Consider two systemgM, F) and (A, G) and a smooth concept ofdifferential equivalence
mapping : M — N (remember that by definition every pefinition 4: Two systemg M, F) and(A\, G) arediffer-
component of a smooth mapping depends only on a fingtially equivalentt (p, ¢) € M x A/, or shortly,equivalent
number of coordinates). Lgtc M and denote by = ®(p).  at (p, ¢), if there exists a smooth mapping from a neigh-
If ¢ — &(¢) is a trajectory of(M, F) in a neighborhood porhood ofp to a neighborhood of = ®(p) which is an
of p, i.e, endogenous transformation @i, q).
Vi, () = F(E(D) (M, F) and (N, G) are (differentially) equivalenif there
exists a smooth mapping from an open dense subgtc M
the composed mapping — ((t) = ®(£(t)) remains in a to A which is an endogenous transformation fromt, F) to

B. Changes of Coordinates, Liea€klund
Mappings, and System Equivalence

neighborhood of; and satisfies the chain rule (N, G) in a neighborhood of every pair of poin{s, ®(p)),
] 9% ) 9P for p in D.
¢(t) = 3 (&).£(t) = 3 (&@).F&)). This (differential geometric) notion of equivalence corre-

sponds to the differential algebraic notion of equivalence in
We insist that the above expressions involve only finite sunf22] when the ground field is a field of constants. The com-
even if the matrices and vectors have infinite sizes: indeegarison between the differential algebraic and the differential
row of 9@ /3¢ contains only a finite number of nonzero termgeometric settings is developed in [25].
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In the previous definition, if endogenous transformatiorend vice versa. MoreoveF;, and G being ®-related implies
are replaced by Lie-&klund isomorphisms, we obtain the

coarser notion obrbital equivalence &=y, ), Bly, 7))
_Definitio_n 5: Two systems(AM, F) and (/\/,_ G) are or- oy O iy
bitally equivalent at(p, ¢) € M x A if there exists a smooth oy 9(y, v) + Z PR (30)
mapping® which is a Lie—Bcklund isomorphism fromAA, =0
(span )] to [N, (span G)] at (p, ¢) with ¢ = @(p). for some large enough

(M, F) and(N, G) areorbitally equivalentf there exists  |n other words, every time — (z(t), u(t)) is a trajectory
a Lie-Bicklund isomorphism® from [D, (span F)] to [V, of (28), then
(span G)], with D an open dense subset 6f, at every pair ‘ ‘
(p, ®(p)). for p € D. £ (u(0), u(t)) = (w(x(8), W), o (2(), TFH(H))

Clearly, orbital equivalence includes differential equiva trajectory of (29), and vice versa,

lence. Orbital equivalence means that there exists a loca . . .
he adaptation of the above interpretation to LiaeBund
one-to-one correspondence between the curvesfotangent . . : : : .
isomorphisms is easily done by locally expressing the time

to (span F) and the curves oW tangent to {pa . But, . . ! .
(span. F) i tang pan &) scalings as functions of a common time scale. A convenient

as opposed to differential equivalence, curve parameterization . : .
as opp . q P way to adapt the above calculations consists of adding the
is not necessarily preserved.

Remark 5: Consider the case of two uncontrolled dynaml—OCaI time as a new coordinate, namely

ics: & = f(a), 5 = gly) wherex = (z1, -, an), y = o, 2, uw) = (r,4,0), Yy =(,zu). =n
(y1, -+, yp). If » = p, the classic straightening out theorem

[1] implies that they are both locally equivalent g9 = An important property of endogenous transformations and
0, -+, &_1 = 0, & = 1 and therefore equivalent in ourLie—Backlund isomorphisms is that they preserve the number

sense. m of input channels.
Example 5: Consider the two classic systemi& x U x  Theorem 1:Consider two systemgM, F) and(V, G). If
RS, F) and(Y x V x R, G), respectively, describing thethey are orbitally equivalent, then they have the same number

m 0

dynamics of inputs.
. n m Proof: Consider the Lie—Bcklund mappingp from [AM,
b=J@ ), (@ u) €X xUCR" xR (28) (span F)] to [N, (span G)]. It can be expressed in local
v =9y, v), (y,v) €Y x V CR" x R”. (29)  coordinates as
The vector fieldst’, G are defined by o(t, =, w) =(, y, 7)
F(‘Tv u, u(1)7 u(2)7 o ) = (f(-T7 u)? u(1)7 u(2)7 i ) = (T(t’ €5 uk)’ @(t, €, Uk)’ Oé(t, x, uk—i—l)a

alt, o, T42), )
G(y7 v, U(l)v U(Q)v o ) = (g(y7 U)v U(l)v U(Q)v . ) .. . . .
wherek is just a fixed “large enough” integer. Denoting by

Let us recall the notations = (u, v, v, ...) and@* =

: . - . P, (t, z, @)

(u, u®), -~ u®), where k is some finite but otherwise pAT T . e I
arbitrary integer. If the systems are equivalent the endogenous = (T(@ T, u ), <P(t7 z,u ), a (t7 z, wH ))
transformation® takes the form

P(x, u) = (¢(z, Hk), oz, Uk"'l), a(, Uk“), )

= (yv i)'

Note that sincey = ¢(x, @*), and sincev is a solution Because® is invertible, ®,, is a surjection for allx. Hence
of the implicit equationgj— g(y, v) = 0, thenv may be the dimension of the source is greater than the dimension of

expressed as a function 6f, 7) or equivalently as a function the target
of (z, @w**'). Accordingly, it is easily seen that'’) is a v 1 /
N . ' , +n+mk+p+2)>14+n" +s(p+1
function of (z, w**t7+1) for any j > 0. s (ktnt2) (1)
Hence® is completely specified by the mappingsand«, wherer’ is the dimension oft’, or
i.e., by the expression of, v in terms ofz, w. Similarly, the

for 1 > 0, we have

(1,9, 7)) = @, (¢, x, et

inverse ¥ of ® takes the form (m—s)p+(1+n+m(k+2))—(1+n"+5) >0, Yu>0.
U(y, 7) = (z/)(y, ), By, 1), By, 712), ) Clearly, it implies thatm > s since otherwisém — s)u could
— (z, 7) be made arbitrarily negative fau large enough. Using the
i same idea o leads tos > m. [ ]
for some/. For controllable linear systems, we have the following more
As ¢ and ¥ are inverse mappings we have precise result.
¢(¢($ Uk)’ o (x’ Uk-i—l-i—l) — Theorem 2: Two (classic) linear controllable systems are

S . differentially equivalent if, and only if, they have the same
Aoz, @), @+ (2, WHH2)) =u number of inputs.
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Proof: The necessity follows from Theorem 1. Conio prove the controllability. According to Theorem 2, the proof
versely, since a linear controllable system admits a Brunpovsis complete. [ |
controllability canonical form (see, e.g., [41]), it suffices to The controllability of differentially flat systems is now
prove that two such canonical forms witlh inputs are related to the well-known strong accessibility property of
differentially equivalent. Consider two such formétf“) =1, honlinear systems due to Sussmann and Jurdjevic [74] (see,
andy"” = v;, i =1, ---, m where they;’s and;’s are the also, [32], [36], [58], and, for a presentation of the strong
associated controllability indexes. It is then straightforward @ccessibility property in the language of infinite jets and
remark that they are both differentially equivalent to the trividirolongations, see [17] and [26]).

system(IR%°, F,) (see Example 1). - Corollary 5: If a classic nonlinear system is differentially
flat aroundp, then it satisfies the strong accessibility property
C. Flatness at p.

Proof: Our system is differentially equivalent aroupd

Recall from Example 1 that a trivial system is a systemy a trivial systenvia an endogenous transformatién ¢ and
(R, F,), where Fi(y, y, y@, -y = (P, 4@, 4@, its inverse¥ give a continuous local isomorphism. Therefore,

), with y € R”. the image byl of an open neighborhood df(p) is an open
Definition 6: The control system(M, I) is said to be neighborhood ofp, which means that every trajectory of the
differentially flat (or shortly flat) aroundp, if, and only if, trivial system starting fron®(p) and passing through any point
it is equivalent to a trivial system in a neighborhoodpoltis 4 of this neighborhood is the image of a trajectory of the

called differentially flatif it is differentially flat around every nonlinear system joining the poiptand ¥ (q). Therefore, the

p of an open dense subset M_- _ o interior of the reachable set fromis an open neighborhood
The sety = {y;[j = 1, ---, s} is called dflat or linearizing of p and, as a consequence of [36] and [58], the strong
output of M. accessibility condition holds true. ]

Definition 7: The control system(M, I) is said to be  Example 6: Consider the control system
orbitally flat around a pointp if, and only if, it is orbitally

equivalent aroung to a trivial systemQrbital flathessmeans T1 = u, iy = (u)?. (32)

orbital flathess around every point of an open dense subset . _ . .

of M. Proposition 6: System (32) is orbitally flat but not differ-
We immediately deduce from Theorems 1 and 2 the fogntially flat. _ _

lowing result. Proof: Consider the mapping

~ Corollary 3: Consider a flat system (orbitally or differen- P RxRxR® — RxR®

tially). The number of components of a flat output is equal to W

the number of input channels. <x1’ 9, (u(“)) ) R <d # U)
Reformulating the Theorem 2, yields the following. p>0 dr® J <o
Corollary 4: A (classic) linear system is flat if, and only

if, it is controllable. with 7 =z, andy = w. _ o

Proof: Consider a flat classic linear systeém= Az+Bu, Clearly, ¢ is a Lie—Backlund isomorphism sincét/dr =

the notations being those of the Example 2, and, for the trivibl“a_ y = dy/dr = dzs/de; = u and the derivat(i;/)es of
system, of the Example 1. If the system is not controllablg, With respect tor are computed by the formulg'®’ =

there exists a linear differential equation (d/dt)yy* =V (dt/dr) = (1/u)(d/dt)y* 1) for everyk > 1.
Converselyz, = 7, z2 =y, u =y, andt is recovered by
For + Eyi+ 4 Eaz(® =0 (31) dt/dr = 1/y). Therefore, (32) is orbitally flat. On the other

hand, it cannot be differentially flat since, for single input
systems, it implies static feedback linearizability [10], which
is clearly not the case (see [34] and [40]), and the assertion is
proved. [ |

An example of a nonorbitally flat system can be found in
Hilbert in a different context [33]. Comparable ideas have also
been exploited in [22], [66], and [72] to derive the ruled-
manifold criterion, which is a most useful necessary condition
for differential flatness.

Example 7—VTOL Aircraft (Continued)As shown in [49],
this time-invariant system is differentially flat. The flat output
is the Huygens oscillation center

independent of the input;, with « > 0 and at least one
of the matricest;, 0 < j < «, nonzero. According to the
equivalence to a trivial system, we must have- ®(%°), for
some integel? > 0, with, as beforegz® = (y, 9, -- -, y»)
and ¢ a submersion. Easy calculations show that, for eve
integerk, 2 = A, (7°H+1) + (0% /95°)(d*5° /dt*) where
Ay IS an expression involving at most derivativesyofip to
the order3+k— 1. Replacing in (31), we gelo®(7°) +- - -+
Eo(Ap(@PHF=1) + (09 /0%°%)(d*5” /dt*)) = 0. According to
the independence of the componentsyef?® and to the fact
that the mappingp is a submersiong®/97” is a full rank
matrix in an open dense subset and thus we must hgve 0. (y1, y2) = (z + e sin 6, 2z + & cos 6). (33)
Following the same lines, we gét, = F,_1=---=FE; =

0. Finally, we also havé?oé(yr") = 0, again by the fact thab S0ur _proof demonstrates that the con;rql_lability of g differentially flat
is a submersion, since otherwise, the componenﬁi ofould system is stronger than the strong accessibility property; as a matter of fact,

) et . > " we can reach the points of an open sulegetindthe corresponding point in
be dependent by the implicit function theorem, which achieves state space.
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Consider the manifold\t with coordinates(z, v,, 2, v, 6, Proposition 7: Systems (1), (2), (6), (9), and (10) are all
ve, (ul”, u$”),>0) and vector fieldF defined by (26). Let differentially flat.
us also consider the trivial systeffRs”, F5>) with F» defined

as in Example 1. IV. INTERPRETATION OF EQUIVALENCE
The mapping IN TERMS OF FEEDBACK
Consider the two systen{s{ x U x IR>”, F) and(Y x V x
d: <a:, Vg, 2, Uz, 0, vg, (u§”>, ué”)) ) R, @), respectively, describing the dynamics
v>0
(), (1)
= (ylu s )HZO = f(z, u), (z,u) e X xU CR"xIR™ (36)
7 =g(y, v), (y, ) eY xVCR xR’. (37)
where we have used the conventigh= v;, i = 1, ---, m,
and

The vector fieldsF, G are defined by

1 =z + ¢ sin 6

1 2 1 2
vo 7+ ¢ cos F(w w, u®, 4@, ) - (f(x’ w), u®, u®, )
Y =, + vy cos 0 Gy, v, v, 0@, ) = (gl 0), oD, 0, ).
ygl) =v, — evg sin 0
y§2) =(uy — e(vg)?) sin @ Note that the general case can be reduced to the above
@ _ 1. (w1 — e(v9)?) cos 0 case as follows. We have seen that a system may be locally
= J ' ¢ described by a manifold{ x IR’ with coordinates(¢, &)
3 = = ((uy — (ve)?) sin 6)) and a vector field of the form (25). Singge contains only
Cg a finite number of derivatives of;, let us denote byr
52 =2 ((uy — (vs)?) cos 6) the highest order of derivation and = «("). Then setting
632 z= (¢ u a, -, u""Y), we easily see that the vector field
54) =—((ug — (vg)?) sin ) in these new coordinates is expressed as a classic vector field.
dt2 We thus only sketch the results in the classic case since they
4 _ & ((uy — e(vg)?) cos 6) easily extend to the general case by the same remark. In order

T de? to avoid some technicalities related to the intrinsic definition
: (34) of a general dynamic feedbatkhe next result, though valid
for general systems, is only stated in the classic setting.
is an isomorphic endogenous transformation such #Hhaind If systems (36) and (37) are (differentially) equivalent, we

F, ared-related. The inverse mapping is based on the relatiof€ 90ing to show that it is possible to go from (36) to (37)
(13), which, in our notation, reads and vice versaby a dynamic feedback

rT=y —¢ yt? u=a(z, 2, w)
2 2 2=alz, 2z, w (38)
)+ (741) oo
y§2> +1 with z € Z < IRY in the usual sense, namely by a
=Y e > 2 diffeomorphism of the extended state spate< Z.
\/(y;@) + (yg) + 1) We say that the dynamic feedback (38gizdogenoud the
@) original system (36) is differentially equivalent to the closed-
0 — arctan % (35) loop system (36)—(38). Such a feedback is catbedogenous
241 ) because the new variables it contains can be expressed as

functions of the state and (finitely many) derivatives of the
As noted in [22], differential flatness means that the stateput.
and input may be completely recovered from the flat output Of course we cannot hope to go from one dynamics to
without integrating the system differential equations. Thilme other without changing the state dimension. But this is in
consequences on the solution to the motion planning problemme sense the only thing we lose.
as well as for trajectory stabilization are immediately under- Theorem 8: Assume that the systen{st x U x IR;’, F)
stood. The reader may refer once more to [22], [50], and thed (Y x V' x RI", G) are differentially equivalent. Then,
bibliography therein for an extensive collection of examples= m and there exists an endogenous dynamic feedback such
illustrating the various applications of flatness. m that the closed-loop system (36)—(38) is diffeomorphic to (37)
As a consequence of the flatness of the VTOL and of tipgolonged by sufficiently many integrators.
equwalen(_:e relation described in Section I, we have proVed‘lt can be shown (see [20] and [21]) that a general dynamic feedback is a
the following. Lie—Backlund correspondendgsee [80]).
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Here “(37) prolonged by sufficiently many integrators” roll angle altitude z
means 1 5
49
¥ =gy, v) os 48
o =W o a7
K — (@ y
v = os 4.6
45
' -1 44
o — (39) 0 5 10 0 5 10
lateral distance x main thrust
for u large enough. 15 13
Proof: Remember that it suffices to prove the result_| ~, )
in the classic case. The proof follows [45] and [46]. Let 12 N\
7= (y, 7) = (y, v, vV, - v andw = v{#+Y), Using 5
the notations of Example 5, we see that, fdiarge enoughy) 11
depends only o and3 only on (g, w), i.e., the endogenous °
transformation¥ takes the form 5 ] :
4] 5 10 4] 5 10
T O )= i i 2. @), .-
\I/(y, w, W, ) - (z/)(y), /j(y’ w), /j(y’ w )’ ) Fig. 3. The reference trajectories (dashed) and the closed-loop trajectories

(continuous) foré, x, =, and the main thrust .
and (30) now reads

FpGD), B, w)) = %g(g) w) (40) Remark 6: The previous theorem may easily be extended
? ? a ~ ?

to orbital equivalence. The proof is left to the reader. m
wherej = (g, 7) is the prolonged vector field corresponding S?nce any prolonggtion of a controllable linear system is
to (39). again a controllable linear system (see [70]), we are lead to
Corollary 9.

Corollary 9: If a system is differentially flat, there exists

an endogenous dynamic feedback such that the closed-loop
7= K(g) = (), o) system is diffeomorphic to a linear controllable system.

o . . i i This result slightly clarifies previous works in dynamic

is invertible (such a splitting exists becaysepeing a block of ¢.oqphack linearization due to Charket al. [10], [11].

components of t_he invertible mappirg is full rank). Apply Example 8—VTOL Aircraft (End)According to (35), the

now the dynamic feedback state of (1), i.e.,(z, v, 2, vz, 0, vg) IS a function of the
u=pB(K " (z, 2), w) linearizing output(yl,_yQ) and its derivatives up to orde_r
2 =a (K—l(a: 2) w) « = 3. Thus, according to the above method, there exists

T an endogenous dynamic feedback leading to the following
where g, stands for the projection of corresponding taj,, closed-loop systemao(+ 1 = 4):
to get the closed-loop dynamics

(§) = fewzwy= (110 U 0 2y

G (K™, 2), w)

Let 4 = (4., ) be a splitting of the components §fsuch
that the mapping

y =v, wY =
It yields the following linearizing dynamic feedback £ 2):

Using (40), we have let us denotey = u; —e(vg)? andsy = n2. By (34), we have

f(K(g)), w) _ <f(r‘/)(?)lﬁ(gv w))) y?) =7 sin 6
oy ol ) ygg) =19 sin 6 + nvg cos 0
= <3_§ ) 0)5)(@, w) ys? = — 14 cos 8
oK ’ ! yé?)) =12 cos 0 — nyvg sin 0
=35 (D)9, w) and thus
which means that (39) and (41) are difeomorphic. Z/YL) =1 sin 6 + 2nove cos 6 + nrus cos 6 — nug sin 6

Finally, sincey = ¢(z, w’) andv = oz, uw’**) for some

v, we get that: = g, = @, (x, wt#*1), where stands for . U
the mapping p, «, -, o*)) and wherep, is the projection yé ) — 4 cos B — 2nave sin O — mrus sin 6 — nyv3 cos 0
of ¢ corresponding taj,. It proves that (36) and its closed- = 9.

loop dynamics (41) are differentially equivalent and thus that
the corresponding dynamic feedback is endogenous. m Inverting this linear system with respect 49 and u. yields
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Fig. 4. An animation of the dynamic behavior of the VTOL aircraft, with the intensities of the thrust of each reactor and of the resultant applied
to the center of mass.

N

A

the following dynamic compensator: We illustrate this approach with a simple simulation: the
initial rest point isz; = 10, 2; = 5 and the final one is
zr =0, zr = 0with ¢ty —t; = 10s. To show that perturbations
may not alter the performances of the closed-loop system, the
uy =m1 4 &(vg)” system is given erroneous initial conditions. The simulation
1 . results giving(8, =, ») and the thrust are displayed in Fig. 3
Y= (v cos 6 = vy sin 6 = 2vgmp). (“42) " and an g:;mimgaftion is )presented in Fig. 4. it lg
Notice that this dynamic feedback is not a simple prolonga- Remark 7: The flat dynamics (16) with outpuyy =
tion where time derivatives of the contrgk,, u,) are added (v1, -+, ¥m) is @ square left and right input—output invertible
to the state. For this system, classic results show that, fystem (see, e.g., [15] and [58]), where, moreover, any
any u1 > 0 and u» > 0, the prolonged system (1) withcomponent ofw or = may be, by definition, recovered
w$") =y and ud"™ = wv,, is not linearizable via static from u without integrating any differential equation: we

feedback. This point constitutes one of the major difficultiedill say that it possesses #ivial zero-dynamicsor a

=2
o =y sin 6 4 vy cos 6 + (ve)’n

for finite characterization of flat systems. trivial residual dynamics(see [36] and [58] for a general
be used to track given reference trajectories. necessarily working at an equilibrium point. It yields the

Set X = (=, vs, 2, vs, 0, vg), the state of the vTOL following. - o _
model. Assume that the goal is simply to go from an initial Proposition 10: The system (16) is differentially flat around
state X; at time t; to a final stateX; at time ¢;. Thanks a point if, aqd only if, it is possible to find am—dmgnsmnal
to the flatness of the system, the state and input can ®gPuty, which smoothly depends around that pointan,
expressed in the coordinatés, 4, i o) 0(4)). Therefore, and a finite number of derivatives af such that the resulting
the constraints on the state at timesind¢, can be translated Square system is left and right input-output invertible, with a

into constraints ory and its derivatives up to fourth order.lrivial zero-dynamics. _
For example, if we want to go from a given rest point This proposition, which is an easy adaptation of a result

to another rest point, any curve satisfying these constrairité, [37], may be considered as an alternative definition of a
for instance a polynomial of degree seven with respect {gt System. However, with such a definition, the underlying
time, namelyy;(t) = EZZO a; 15, j = 1,2, satisfying feecti):aack eqt:(ljvabler:ce relation a}[s well as the geometry of the
i(t) = 25+ £ sin B, ga(h) = 2 + & cos B y§1)(ti) _ problem would be less apparent. [
y](?)(ti) = y](»g)(ti) =0,7=1, 2, andy(t;) = z; +¢ sin 6,
valty) = 7+ cos b,y () = o} 7(g) = w7 (1) = 0,

4 =1, 2, will then generate a suitable trajectory of the system
by solving two systems of linear equations for thex28
coefficients {a;, o, -+, a7 J = 1; 2}* (see [22] for mOre o estigating a new system equivalence, the LizelBund
details). Let us denote by" = (y{, y3) the corresponding oqjivalence, which can be realized by endogenous feedback,
reference trajectory. Here, we want such a transfer to tagespecial type of dynamic feedback. Such a LigeBund

place in 10 s (remember that the distances are normalized Wil jyalence is shown to be useful to reduce the dimension
respect to the gravitation field, hence a length of 10 represepis, complex system and to study differentially or orbitally

V. CONCLUSION

We have proposed a differential geometric approach for

about 100 m). o flat systems.
At a second SteE' we close the loop by stabilizing the g4t systems should be regarded as justified by the wealth
reference trajectory™. It suffices to use (42) with of realistic case studies it is capable of handling, as already
3 . . . .
N ) (i o mentioned in the introduction. Unfortunately, up to now, no
vi = (y; )( '+ Z ki, j (yz - (¥ )(J))’ t=1,2, general checkable conditions for flatness have been obtained.
i=0

o . ] _ This is perhaps the main mathematical problem in this setting
the coefficientsk; ; being chosen such that the linear timenq constitutes a currently active field of research, as can be

invariant error dynamics seen in [4], [11], [37], [39], [50]-[52], [56], [57], [61]-[63],
3
@ ) o [69], and [72].
i —Z kige”s t=1,2 More generally, the classification of nonlinear systems,
7=0

, , ' including nonflat systems, via Lie-éBklund equivalence re-
with ¢ = 49 — (y1)), are stable. mains to be done.
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